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Abstract
The use of silicon photonic devices for optical manipulation has recently enabled the direct
handling of objects like nucleic acids and nanoparticles that are much smaller than could
previously be trapped using traditional laser tweezers. The ability to manipulate even smaller
matter however requires the development of photonic structures with even stronger trapping
potentials. In this work we investigate theoretically several photonic crystal resonator designs
and characterize the achievable trapping stiffness and trapping potential depth (sometimes
referred to as the trapping stability). Two effects are shown to increase these trapping
parameters: field enhancement in the resonator and strong field containment. We find trapping
stiffness as high as 22.3 pN nm−1 for 100 nm polystyrene beads as well as potential depth of
51 000 kBT at T = 300 K, for one Watt of power input to the bus waveguide. Under the same
conditions for 70 nm polystyrene beads, we find a stiffness of 69 pN nm−1 and a potential depth
of 177 000 kBT . Our calculations suggest that with input power of 10 mW we could trap
particles as small as 7.7 nm diameter with a trapping depth of 500 kBT . We expect these traps
to eventually enable the manipulation of small matter such as single proteins, carbon nanotubes
and metallic nanoparticles.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the original experiments reported in Ashkin’s founding
article [1], optical or laser tweezing techniques [2] have
been used in a large number of different areas including:
single cell dynamics [3], optical chromatography [4, 5],
directed assembly [6, 7], and have already helped understand
complex phenomena like cellular motility [8] and single DNA
mechanical properties [9]. Though extremely successful at
these size scales a limitation of traditional optical tweezers
is in manipulating smaller dielectric objects, on the order of
100 nm or less. A few optical tweezing techniques have
been developed to trap nanoscopic objects [10, 11] but not
generally pure dielectrics which are closer approximations to
biological species. From Rayleigh theory it is well known
that the optical gradient force, which is usually exploited as
the trapping force in optical tweezers, scales with the radius of

the particle cubed [12]. Roughly speaking then, it takes a 1000
fold increase in the applied trapping power to apply the same
force to a particle that is only ten times smaller.

In order to overcome this limitation a number of new,
near field optical manipulation techniques have been developed
which exploit the strong forces that can be generated in
the near field of plasmonic or resonant photonic structures.
These devices, recent variations of which include plasmonic
tweezer [13–15], whispering gallery mode carousel [16] and
photonic crystal resonators [17–19], have the added benefit
of also being in a format which can be readily integrated
with a lab-on-chip device while exploiting the enhanced field
provided by photonic resonances. Further improvements in
these devices have recently been introduced by allowing the
full strength field directly interact with the trapped particle
using either slot and hole apertures [17, 18, 20, 21]. Using the
photonic crystal resonator, we have been able to evanescently
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Figure 1. Evanescently coupled linear resonator for optical trapping.
In this study we investigated three resonator designs including the
‘microcavity plus hole’ (MH) design shown here. The trapped
particle is shown above the central hole.

trap particles as small as 48 nm in diameter [19]. The
experimentally demonstrated state of the art technique in terms
of high trapping stiffness is provided by the Self-Induced Back
Action design trapping 50 nm particles with a stiffness of the
order of 7 pN nm−1 W−1.

With the aim of being able to optically manipulate
even smaller material, we explore theoretically the trapping
potential of a number of silicon photonic crystal resonator
designs and evaluate them against techniques such as those
described above. In the devices we examine here, the
resonators are excited through evanescent coupling from a bus
waveguide (figure 1) as this offers the greatest multiplexing
possibilities and is in line with what we have demonstrated
experimentally [22]. To the best of our knowledge it is the first
time comprehensive calculations are performed with resonant
devices to evaluate the trapping stiffness and stability. It
is essential to perform comprehensive calculations since the
Rayleigh approximation does not hold for the same range
of particle sizes in tightly confined electromagnetic fields.
The sizes of the particles considered in this work are in the
limit of the Rayleigh approximation range. In our devices,
the perturbative approach is also affected by the inaccuracy
of the Clausius–Mossotti polarizability in fields with high
gradients. In a previous work, Barth et al [17] performed
exact calculation to estimate the dependence of resonant traps
on the size of the trapped bead. Recently, Lin et al [18]
performed perturbative calculations to estimate the trapping
capacity. In this paper, we present an exact approach to the
stiffness evaluation while addressing the issues arising from the
resonant wavelength shift that Barth et al predicted by taking
great care to distinguish the numerical impact and the physical
contribution.

In the first two sections of this paper, we introduce the
three devices we focused on, namely the microcavity design
(MD), the mode gap design (MG), and the microcavity plus
hole design (MH), and then the details of the numerical
analysis method used to characterize them. After that we
present and discuss the results in sections 4 and 5 focusing
on the MH design because it offers the highest stiffness and

stability. Tables in section 4 provide direct comparison of these
results with the state of the art.

2. System description

Optical resonators are devices in which photons travel along
a closed path. Fabry–Pérot resonators represent a class of
resonator in which light bounces back and forth between two
facing mirrors. In such a cavity, the allowed modes are those
where the different light rays constructively interfere with each
others. The resonant condition is given by the constructive
interference condition that the phase delay in the resonator
should be an integer multiple of 2π . In photonic crystal
resonators, the cavity is sandwiched between two photonic
crystal mirrors, thus presenting a newer version of the Fabry–
Pérot resonator (figure 1). The sub-diffraction limited field
confinement allows for higher gradients. According to the
Rayleigh theory, the trapping force is proportional to the
gradient of E2 [12]. Hence we obtain higher forces with
tighter field confinement. The stable position is located at the
maximum of the field. In their movement, the particles will
preferably follow the streamlines of the gradient of E2 towards
the stable position.

In figure 2, we present the three photonic crystal resonator
designs examined here, which we refer to herein as: the
microcavity design (MD), the mode gap design (MG), and the
microcavity plus hole design (MH). All the resonator devices
presented here were assumed to have the bulk properties of
silicon (refractive index nsilicon = 3.47) and had cross-sectional
dimensions of 250 nm high by 450 nm wide. As shown in
figure 1, light was coupled into the resonators evanescently
from another silicon bus waveguide (also 250 nm height
per 450 nm large) which ran alongside the resonator. The
devices lie on a silica substrate (nglass = 1.45), mimicking
a device fabricated from a silicon-on-insulator wafer, and the
surrounding medium is assumed to be water (nwater = 1.33).
The MD design (figure 2(a)) consists of two identical tapered
Bragg mirrors [23]. Each reflector comprises of seven holes
of radius 100 nm separated by a lattice constant a = 390 nm.
An eighth hole at distance 0.9 ∗ a is added and serves as a
taper. The microcavity itself has a total length of 1.5 ∗ a.
As in the MD device, the MH device is an implementation of
Velha et al’s [23] design for high quality factor 1D photonic
crystals. The MH device and the MD are very similar, with
the difference being that an additional 50 nm radius hole is
placed at the centre of the cavity region. It serves as an
inner cavity in which light the intensity will be increased, the
effect is clearly visible in figure 2(b), which is exposed to
the liquid state for trapping. At any liquid/silicon boundary,
the field is increased because of boundary conditions and then
vanishes as an evanescent wave. The superposition of these
evanescent waves in the inner cavity hole is what allows for the
formation of this high field intensity region. The MG design
is inspired from mode gap photonic crystal resonators, which
have recently been demonstrated to exhibit very high quality
factors. The MG design (figure 2(c)) consists of a standard
periodic photonic crystal (same lattice constant a) where the
radius of the etched holes varies from 100 nm at the edges to
40 nm at the centre.
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Figure 2. Specifications for the three photonic crystal resonator devices investigated here showing the computed electric field at resonance.
(a) The Microcavity design, (b) the Microcavity plus Hole design, and (c) and the Mode Gap design. In all figures, the spaces refers to the
centre-to-centre distance between the holes. The core photonic crystal was chosen such that it acts as a mirror for 1550 nm wavelength light.

3. Details of numerical analysis

The numerical technique we used here consisted of repeatedly
computing the trapping forces while shifting the particle’s
physical position along one of the main axes (figure 1). The
force was estimated through the Maxwell stress tensor [24]
given a geometrical frame and its related refractive indices
list. The simulations performed here were done using
a commercial finite element code (COMSOL). The finite
element method, FEM, was preferred over a finite difference
time domain, FDTD, technique due to much lower time
memory requirements. The long photon residence time in
the high quality factor optical resonators necessarily results
in an extremely long simulation time in order to accurately
compute the fields and forces using an FDTD method. A
drawback was that wavelength dependant estimations required
several FEM simulations whereas one FDTD simulation would
have sufficed. For the calculation of wavelength dependant
quantities below, we parameterized the simulation and solved
for wavelengths spanning the resonant domain. The Q factor
is an example of a wavelength dependant quantity, which was
approximated here via equation (1).

Q ≈ λr

�λ
. (1)

In this formula, knowledge of λr the resonant wavelength and
of �λ the full width at half maximum is required.

The main objective of the simulations was to predict the
trapping capabilities of the three designs discussed above. In
all cases the trapping forces were computed by including a
polystyrene bead (npolystyrene = 1.59) in the computational
domain and then integrating the Maxwell stress tensor over an
artificial boundary region that included the particle.

�FEM =
∮

T Maxwell · �n dS. (2)

In this expression FEM is the electromagnetic force, TMaxwell is
the Maxwell stress tensor and n is the outgoing vector normal
to the surface. In our simulations, the integration surface was
a sphere 10 nm bigger in radius than the particle itself. We
verified that changing the integration surface did not affect
significantly the computed force.

A number of mesh quality experiments were conducted
in order to ensure convergence of the solution. Generally
speaking, higher mesh qualities were required in the region
of the particle and integrating sphere in order to obtain the
expected resonance condition and convergence of the force
value. We found that the simulation’s meshing affected
the numerical resonant wavelength. This alteration was
not physical and was disregarded by ensuring the resonant
condition in all simulations. For higher Q factors or larger
particle sizes, the particle’s position would have a sufficiently
pronounced effect on the resonant wavelength that it could
significantly alter the trapping conditions. We describe in the
end of section 5 how, in cases where this resonance shift is
important, this can become a practical advantage by making
the wavelength a tuneable trapping element.

From the force calculations, we were able to extract
two parameters commonly used to describe optical traps: the
trapping stability [12] and the trapping stiffness [25]. To do
this, we start the calculation from the stable position, which
is the equilibrium point, and move the particle away from it
repeating the force computation at every point. For distances
not too far from the equilibrium point, the force response is
similar to a linear spring where the spring constant is equal
to the trapping stiffness. The trapping stiffness therefore,
is the derivative of the restoring force with respect to the
position perturbation around the equilibrium point as described
by equation (3).

ki =
(

∂ Fi

∂ Xi

)
equilibrium

. (3)
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Table 1. Calculated stiffness’ for MD, MG and MH designs for
100 nm particle.

Resonator design
Microcavity
design (MD)

Mode gap
design (MG)

Microcavity
plus hole (MH)

X-direction stiffness
(pN nm−1 W−1)

4.81 13.1 22.3

Y -direction stiffness
(pN nm−1 W−1)

3.30 14.0 37.5

Z -direction stiffness
(pN nm−1 W−1)

8.53 31.3 65.5

Effective stiffness
(pN nm−1 W−1)

3.30 13.1 22.3

Maximum force
(pN W−1)

700 2070 4100

Q factor 500 1400 2200

In this equation, ki and Fi are the stiffness and force in
the direction parameterized by Xi . These values are computed
for 1 W of laser power into the bus waveguide, we use the units
per Watt to lift this dependence as all of the numbers we present
are proportional to the input power. The trapping stiffness can
be evaluated along the three coordinate axes with the lowest
result representing the limiting one. Hence we refer to it as the
effective stiffness. The harmonic approximation also allows us
to express the mean displacement of the particle when trapped
in the potential. We can express the mean deviation 〈x2〉 using
the equipartition theorem:

k〈x2〉 = kBT (4)

where k is the effective stiffness of the trap—i.e. the stiffness
in the weakest direction—, x is the displacement along
one direction, kB is the Boltzmann constant and T is the
temperature in kelvin.

The other parameter is of interest here is the trapping
stability, which is related to the likelihood of the random
thermal energy being able to free the particle from the trap.
The stability leads to the average trapping time proportional to
its exponential following a Kramers escape process [26]. It is
defined as the ratio of the potential energy depth to the available
thermal energy as shown in equation (5).

S = W

kBT
. (5)

Here, W the work necessary to bring the particle from a free
position to the stable point for 1 W of pumping power to the
waveguide, kB and T were already introduced in equation (4).
The potential energy is equal to the opposite of the work
necessary to bring the particle from a free position to the
equilibrium trapped position. In accordance with analytical
expectations [27], we used an exponential interpolation of
the decaying force profile as the particle rises away from the
resonator in the evanescent field to compute the release work
W .

4. Results

4.1. Particles larger than the diameter of the central cavity
hole

Using the simulation methods described above, we evaluated
the trapping characteristics of the three designs. In table 1

Table 2. Comparison of stiffness’ for several trapping devices
recently published.

Device
Trapped particle,
size (nm)

Trapping stiffness
(pN nm−1 W−1)

Microcavity design (MD) Polystyrene, 100 3.30
Polystyrene, 200 7.93

Mode gap design (MG) Polystyrene, 100 13.1
Polystyrene, 200 26.85

Microcavity plus hole (MH) Polystyrene, 100 22.3
Self-induced back action [21] Polystyrene, 100 8.2

Polystyrene, 50 6.6
Slot waveguides [20] Polystyrene, 100 0.2
Plasmonic tweezer [14] Polystyrene, 200 0.013
Conventional tweezer [28] Polystyrene, 220 0.027
Standing Gaussian wave [29] Polystyrene, 100 1

we report the trapping stiffnesses along all three coordinate
axes and maximum force, for the MD, MH and MG devices as
described in section 2. As can be seen the MH design exhibited
the highest stiffness and thus we will expand on that here as
an illustrative case. Figure 3 illustrates the electric field and
force profiles computed as described above. For a 100 nm
particle, the trapping stiffnesses for the MH design were found
to be 22.3 pN nm−1 W−1 and 37.5 pN nm−1 W−1 in the X
and Y directions respectively. The X and Y stiffnesses were
calculated for a particle which bottom was positioned 20 nm
above the resonator surface with a 1 W of laser power input into
the bus waveguide. The stable position of the MH resonator
coincided with the centre of the device. The electric field
is polarized in the Y direction; hence boundary discontinuity
conditions induce a higher gradient along that axis accounting
for the larger stiffness value. Along the Z -axis (figure 3(d)),
an exponential decay in the force profile was obtained which
is consistent with the evanescent nature of the field outside the
resonator. The decay length, the inverse of the argument in
the exponential, was 50 nm and the calculated stiffness was
65.5 pN nm−1 W−1. Therefore the effective stiffness of the
MH design is 22.3 pN nm−1 W−1.

Stiffness’ are the result of the linear interpolation of the
FXi versus Xi curve around the equilibrium point of the device.
When compared with the state of the art devices described in
the introduction, the MH device yields stiffness’ and stability
values significantly higher than other tweezers. In table 2,
we have tabulated reported stiffnesses from recently published
articles and compared them to the results obtained here. The
SIBA tweezer, which reports the highest published stiffness to
date, offers a 8.2 pN nm−1 W−1 effective stiffness for 100 nm
polystyrene (n = 1.575) [21]. It uses the optical resonance
of a light wave propagating through a small aperture. When
a particle is present in the aperture, it induces a shift in
the resonance. By illuminating the aperture with a detuned
wavelength, the particle induces the resonance. It is the fact
that the resonance is sensitive in the position of the particle
that allows such high stiffness. The maximum force remains
of the order of 250 pN W−1 for a 100 nm particle [21]. The
resonant nanotweezer described here can offer forces as high as
4.1 nN W−1. This can be compared to the typical force exerted
by the evanescent field of a waveguide which is of the order of
1 pN W−1.
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Figure 3. Numerical results for the microcavity plus hole (MH) device. (a) Field intensity and its gradient (arrow plot) when the MH trapping
design is on resonance without a particle in the simulation domain. (b) and (c) Force profiles for the particle as it is moved along the resonator
(X axis) and across the resonator (Y axis). In all simulations the particle was maintained at a vertical height of 20 nm above the resonator.
(d) Z -axis force profile computed as the particle is maintained above the resonator’s centre and moved from 20 nm to 120 nm above top plane
of the device. The stiffnesses were evaluated using linear interpolation around the stable position. In the X and Y directions (b), (c) the linear
approximation is very accurate. In the Z direction (c), we did not take the slope at Z = 20 nm but also linearly interpolated the data between
20 and 80 nm which is a conservative estimate. (b)–(d) All calculations done for a polystyrene bead (n = 1.59) with a diameter of 100 nm.

As alluded to above, the stability factor is the ratio of
the work required to remove the particle from the trap, to
the random thermal energy in the system. Very stable traps
therefore have S � 1, and unstable traps have S < 1. We
calculated the potential energy of the trap by integrating the
work needed to release the particle from 20 nm above the
resonator’s centre to a distance far away from it such that the
particle no longer feels the trapping force. In order to be
consistent with the rest of the data, we have calculated the
work to extract the particle from a position 20 nm above the
resonator. The results for all three designs presented here are
shown in table 3. As can be seen, the trapping stabilities as high
as 44 000 W−1 were obtained for the MH design. In table 3,
we also note that the decay length (defined as the inverse
of the argument in the exponential in the force expression)
for the force in the Z direction decreases when the stability
factor increases suggesting that the increased gradient over
compensated for the slightly shorter distance over which the
force was applied. As with the previous case the stability
factors were found using a 100 nm polystyrene particle as a
model target.

4.2. Particles smaller than the hole diameter

Unlike the previous cases for 100 nm particles, for the MH
and MG devices, the most stable position for trapped smaller
particles is within the central cavity hole rather than resting on

Table 3. Trapping stability for a 100 nm diameter polystyrene bead.

Trapping method
Stability factor
at 300 K (W−1)

Decay length
(nm)

Microcavity design (MD) 9 000 60
Mode gap design (MG) 26 000 55
Microcavity plus hole (MH) 44 000 50
Slot waveguides, 65 nm
diameter particle [30]

875 50–100

top of the device. The hole walls offer physical confinement
in the X and Y directions and thus stiffnesses along these axes
are no longer relevant. For these smaller particles, we therefore
studied the forces along the Z -axis position while remaining
inside the hole. It has already been outlined that for this type
of devices [18] the position of a large particle within the hole
can affect the resonance. Our simulations confirmed that for
a 70 nm polystyrene particle in the central hole of the MH
resonator, the resonant wavelength is shifted by 0.4 nm, which
is consistent with the results presented by Lin et al [18]. For
a 40 nm test particle, the resonant wavelength shift was lower
than that resolvable by the solution and thus not considered in
the simulations. We used a mesh cladding cylinder around the
central hole in order to overcome the numerical errors that the
shift in the particle’s position caused. This ‘mesh cladding’
served as a shield to the mesh perturbation caused by the
changing position of the particle inside the hole.
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Figure 4. Field and force in the central hole. (a) Representation of E in the central hole in a plane along the resonator. (b) Trapping force in
the central hole for a 70 nm polystyrene particle. The Z position represents the position of the centre of the particle. The Z axes in (a) and (b)
are not to scale for clarity purposes.

Table 4. Stiffness’, and stabilities for smaller particles.

Device
Trapped particle,
size (nm)

Trapping stiffness
(pN nm−1 W−1)

Stability
(W−1)

Microcavity plus hole (MH) Polystyrene, 70 69 177 000
Polystyrene, 40 11 70 000

Self-induced back action [21] Polystyrene, 50 6.6
Standing Gaussian wave [11] DVB n = 1.592, 50 0.06

For each position of the particle, we set the wavelength
to match the new resonance. As we explain in section 5,
the average displacement is small enough that the local
variations in the resonant wavelength are negligible. For the
70 nm and 40 nm polystyrene particles, we summarized the
calculated stiffnesses and stabilities in table 4. The forces
calculation used for the 70 nm case are plotted in figure 4.
Because of the enhanced interaction with the field in the
hole, the resulting forces are much greater than those for
larger particles evanescently trapped. The 11 pN nm−1 W−1

stiffness we report for a 40 nm particle compares to SIBAs
7.2 pN nm−1 W−1 for a 50 nm particle [21]. The highest
stiffness we report here is that for a 70 nm particle which is
69 pN nm−1 W−1. In addition to these stiffnesses, in table 4 we
also report the inferred stability number for the SIBA design
from the reported trapping energy [21]. Such high figures of
merit in both cases are the result of the enhanced field–particle
interaction that occurs within the hole in this case, or the hole
in the metal sheet for the SIBA design.

5. Discussion

The quest for particle tweezers with higher trapping stiffness
and stabilities is justified by the desire to efficiently trap and
manipulate smaller molecules and other nanomaterials. In
this paper, we explore the possibility of higher stiffness’ and
forces than what has been previously published. We see from
equation (4) that higher trapping stiffness results in better

confinement and therefore greater certainty in the particles
position. Therefore achieving high trapping stiffness is a
necessary step towards handling smaller molecules. For a
100 nm particle and a 10 mW power input, the best design
we developed (the MH design) yields the particle’s position
uncertainty as 〈x2〉1/2 = 4.3 nm. For the 70 nm and the
40 nm particles, and 10 mW of input power, the particle’s
position uncertainties are respectively 2.45 nm and 6.1 nm.
Over these distances, the resonant wavelength shift is minor.
When considering smaller spherical particles, we can use the
Rayleigh theory to compute the expected forces, in this case the
force varies proportionally to the volume of the particle [12].
With this approach we can derive the following two relations:

(
D

40

)3/2

= 6.1

〈x2〉1/2
(6)

S = 700 ×
(

D

40

)3

(7)

where D is the diameter of the Rayleigh particle in nanometres,
〈x2〉1/2 and S are the standard deviation on the particle’s
position and its stability number under a 10 mW of power
input. Using the previous relations, we determine the smallest
size of a spherical particle allowing for stable trapping (S > 5),
while having a standard deviation smaller than the hole height
(〈x2〉1/2 < 250 nm) to be 7.7 nm leading to a stability number
of five and a standard deviation of 72 nm. In these cases, the
variation in the resonant wavelength due to the random motion

6
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of a trapped particle is expected to be small in comparison
with the line width of the resonator and not likely to ‘kick’
the system out of resonance.

Increasing the trapping parameters is important in order to
reduce the power requirements of the trap and by extension the
degree of local heating. The most immediate way is through
field enhancement (for a constant 1 W of input power). The
force is proportional to the number of photons stored in the
cavity which is proportional to the Finesse. Therefore a way
of increasing the trapping force is building devices with higher
Q factors, if the field profile remains similar. One has to be
careful when using resonators with higher Q factors as the line
width is smaller and the presence of a particle is more likely to
kick the resonator out of resonance. This is well known by the
biosensing community which uses ultrahigh Q factors to make
very precise sensors [16, 31].

Among the exciting possibilities of these devices are those
offered by the dependence of the resonant wavelength on the
particle’s position, in particular it’s depth within the cavity
hole. With these resonators it is possible to conceive of a power
free optical trap by slightly red detuning the excitation from
the resonant wavelength when no particle is in the cavity. If
properly detuned, when a trapped particle begins to diffuse out
of the cavity, it could force the system back into resonance
applying a restoring force pushing the particle back into the
trap. A particle trapped in the resulting arrangement would not
experience any force unless it tries to leave the trap creating
an effective optical cage. This leads to a trap with an effective
stable volume rather than a stable point. This represents a new
type of self-induced trapping mechanism.

6. Conclusion

In this paper, our goal was to illustrate the possibilities offered
by integrated optics for the trapping and manipulation of
nanoscopic matter. We have evaluated three photonic crystal
resonator designs and performed a theoretical study of their
specifications as photonic traps. Our calculations indicate
an important enhancement of the trapping parameters as
compared to the state of the art. In the device offering the best
performance, we find stiffness’ as high as 22.3 pN nm−1 W−1

for a 100 nm polystyrene particle, compared with the
previously highest reported stiffness of 8.2 pN nm−1 W−1. For
smaller beads, the field–particle interaction is increased in the
central hole leading to increased trapping stiffness’s. For a
70 nm particle, we found the stiffness to be 69 pN nm−1 W−1

to be compared to 6.6 pN nm−1 W−1 previously reported for
50 nm beads. The confinement in the central hole offers a
greatly increased trapping stability with numbers as high as
177 000 W−1 for a 70 nm particle and 70 000 for a 40 nm
particle. For particles down to 7.7 nm size, we expect
0.08 pN nm−1 W−1 stiffness and stability as high as 500 W−1.
We also highlighted the difficulties and possibilities offered by
the use of higher Q factors resonators. Increasing the Q factor
increases the forces but also the resonant wavelength shift of
the device. It opens some exciting possibilities such as self-
induced trapping.
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